Temperature
(pages 94-103 in text)

• (1) directly controls metabolic rates of ectotherms (invertebrates, fish)
 • Individual growth and development
 • Species ranges (latitude and altitude)

• (2) controls dissolved oxygen concentrations

• (3) is relatively predictable over annual cycle and can provide a basis for species adaptation.
• What determines temperature and *thermal regime* for a stream?
 – Stream thermal regime depends on environmental and landscape “setting” (Fig. 3.1 (Giller & Malmqvist 1998))
Thermal regime can be described by components or features that influence growth and development (Fig. 6.1 (Ward 1992))

- Max temp
- Min temp
- Duration above some threshold (e.g., degree-days)

Biologically-important components of the thermal regime
Thermograph

Degree-days above 0°C:
A biologically relevant way to look at temperature.
Cumulative thermal exposure

\[150d \times 10°C + 150d \times 20°C + 65d \times 10°C = 5,150 \text{ dd} > 0°C \]

\[365d \times 14°C = 5,110 \text{ dd} > 0°C \]
Stream temperatures vary with latitude (and altitude):

and position in a stream network

Figure 5.11 Total annual degree-day accumulation (>0°C) as a function of latitude for various rivers of the eastern United States. (Reproduced from Vannote and Sweeney 1980.)

Figure 5.12 Maximum daily temperature ranges in relation to stream order in temperate streams. (Reproduced from Vannote and Sweeney 1980.)
Streams in the same catchment:
- Can have different thermographs. Figure 5.10
- What about differences in dd >0 per year?

Note: Multiply Y-axis by 10

FIGURE 5.10 Degree-day accumulations and annual totals at six sites along White Clay Creek, Pennsylvania: (1) groundwater, (2) spring seeps, (3) first-order spring-brooks, (4) second-order streams, (5) upstream segment of third-order stream, (6) downstream segment of third-order stream. (Reproduced from Vannote and Sweeney 1980.)
Streams in the same catchment:
- Can have different thermographs. Figure 5.10
- What about differences in \(\text{dd} > 0 \) per year?

Note: Multiply Y-axis by 10

FIGURE 5.10 Degree-day accumulations and annual totals at six sites along White Clay Creek, Pennsylvania:
(1) groundwater, (2) spring seeps, (3) first-order spring-brooks, (4) second-order streams, (5) upstream segment of third-order stream, (6) downstream segment of third-order stream. (Reproduced from Vannote and Sweeney 1980.)
Streams in the same catchment:
- Can have different thermographs. Figure 5.10
- What about differences in $dd > 0$ per year?

Note: Multiply Y-axis by 10

FIGURE 5.10 Degree-day accumulations and annual totals at six sites along White Clay Creek, Pennsylvania: (1) groundwater, (2) spring seeps, (3) first-order spring-brooks, (4) second-order streams, (5) upstream segment of third-order stream, (6) downstream segment of third-order stream. (Reproduced from Vannote and Sweeney 1980.)
Streams in the same catchment:
- Can have different thermographs. Figure 5.10
- What about differences in dd >0 per year?

Note: Multiply Y-axis by 10

FIGURE 5.10 Degree-day accumulations and annual totals at six sites along White Clay Creek, Pennsylvania: (1) groundwater, (2) spring seeps, (3) first-order spring-brooks, (4) second-order streams, (5) upstream segment of third-order stream, (6) downstream segment of third-order stream. (Reproduced from Vannote and Sweeney 1980.)
Streams in the same catchment:
- Can have different thermographs. Figure 5.10
- What about differences in $dd > 0$ per year?

Note: Multiply Y-axis by 10

FIGURE 5.10 Degree-day accumulations and annual totals at six sites along White Clay Creek, Pennsylvania: (1) groundwater, (2) spring seeps, (3) first-order spring-brooks, (4) second-order streams, (5) upstream segment of third-order stream, (6) downstream segment of third-order stream. (Reproduced from Vannote and Sweeney 1980.)
Temperature and insect life cycles

- Egg hatching
- Larval growth and development
- Adult emergence
3 Types of life cycles

[Fig. 5.2, Merritt & Cummins 1996]

Use 3 univoltine caddisfly species example:
(5 instars + pupal stage)

(1) **Slow Seasonal**
- Eggs hatch quickly, juveniles grow slowly, maturity in ~1, 2, 3 years
 - Species may have extended hatching period
 - Examples -- many univoltine stoneflies, some mayflies and caddisflies

Where adaptive?
Stable vs. unstable streams?
Perennial vs. intermittent streams?
(2) **Fast Seasonal**

- Long egg or juvenile diapause, followed by rapid growth to maturity
 - (Diapause = a state of arrested metabolism)
 - Different species emerge in Spring, Summer, or Fall

Where adaptive?

- Streams with short growing period
- Intermittent streams
- Perennial streams with competitors present
(3) **Non-seasonal**

- Many size classes present at all times
 - overlapping cohorts of multivoltine species (chironomids)
 - poorly synchronized (extended mating/egg-laying)
 - species life cycle spans > 1 yr (some stoneflies)

-Where adaptive?
 - In frequently disturbed streams with high juvenile mortality ("bet hedging" life history strategy)
 - In cold, stable streams that require more than one year to complete life cycle.
 - In warm climates where air temperatures for adults are suitable year round
Insect Eggs

• When laid, they can
 – a) all hatch immediately
 – b) hatch over time (Fig. 3.17)
 – c) hatching delayed (diapause)
• Some eggs require cold winter temperature to break diapause
 – Example: Hypolimnetic (deep) release Dam on Saskatchewan River, Canada

• Many aquatic insects in far North have winter egg diapause.

• Rising spring temps after ice-out are required to break diapause [Fig. 3.14]

• Dam warms winter water temp. to 4°C for tens of kilometers

Biotic response:
 30 genera and 12 families eliminated
 → 1 family remains!
Species have different thermal optima and tolerances

- Salmonids (trout and salmon): Geographic range determined by water temperature. (same true for insects)
- Upper thermal tolerance (Tmax) restricts trout to streams not exceeding ~20-25°C (~70°F). (“cold-water” fishes)

- Lower thermal tolerance can limit adequate growth and development in northern latitudes, or below dam outlets (~40°F or 4°C).
- An “optimal” temperature (Topt) results in greatest growth
- Higher temperatures favor other species. (Warm-water fishes)
 Brett et al. 1969

![Growth Graph](image)
Growth rate and development:

Adult body size depends on *growth rate*, which is temperature dependent.

Different species have different thermal optima.

Strong selective pressure for larger body size. Why?
Most temperate zone aquatic species have positive growth over the winter!

- Unlike terrestrial insects (which have resting eggs or adult diapause)
- Food is available in winter!

- Some species extremely cold-adapted (Fig. 6.12 (Ward 1992)) - even under ice!

Why are females larger than males?
The optimal thermal regime for species is one that maximizes

- Larval body size (and thus adult fecundity)
- Larval metabolic efficiency of energy use

→ Results in more, larger individuals and thus greater local population abundance
Metabolic efficiency and body size

- High temp → **high metabolism** so **high cellular respiration losses** (metabolic heat) which is not available for growth → small adult
- Low Temp → **slow metabolism** and **low growth potential**, available energy allocated to adult tissue rather than growth → small adult

- For every species, there is an **optimal** temperature that **maximizes** larval/adult body size
 - Established experimentally for several insect species by Vannote and Sweeney (1980)
 - Consider an insect species that must complete development in a **fixed time** (e.g., univoltine or synchronously emerging species)
Metabolic efficiency and body size

- High temp \rightarrow high metabolism so high cellular respiration losses (metabolic heat) which is not available for growth \rightarrow small adult
- Low Temp \rightarrow slow metabolism and low growth potential, available energy allocated to adult tissue rather than growth \rightarrow small adult

For every species, there is an optimal temperature that maximizes larval/adult body size
- Established experimentally for several insect species by Vannote and Sweeney (1980)
- Consider an insect species that must complete development in a fixed time (e.g., univoltine or synchronously emerging species)
Where in a species’ geographic range would you expect to see largest individuals? Largest populations sizes, and why?

- What environmental or landscape factors might be complicate this expectation?
Adult emergence:
- Juveniles develop adequately to become sexually mature
- If temperature too cold, then what?
 - 1) failure to develop and local population cannot persist
 - 2) some species are able to delay maturation, e.g., go from univoltine to semi-voltine (recall example from earlier lecture)

Two thermal cues for timing of emergence:
- 1) cumulative degree-days > 0°C
- 2) fixed temperature of emergence

[Fig. 7.13 Sweeney et al. 1992]

Ischnura elegans (damselfly)
- 43°N trivoltine
- 53°N univoltine
- 57°N semivoltine

What is Advantage? (Hint: cue)

Figure 7.13. Date of first adult emergence (triangles) for various geographic populations of *Ephemera septentrionalis* superimposed on isothermal lines showing the date that a given temperature is reached in streams throughout its geographic range. Isothermal lines are smoothed temporally and latitudinally from daily temperature records for 50 sites.
• **Photoperiod** can also be a trigger in temperate streams
 - Why?
 • good predictor of air temperature for adult

• **2 Types of emergence:**
 - **Synchronous**, i.e., all adults appear within a few days
 • Mayflies - Adults don’t feed
 • Evolutionary reason for synchronous emergence?
 – swamp predators
 – find mate
 - **Asynchronous**, i.e., adults emerge over time
 • Often variation in size of adult
 – Later emergers usually smaller (Fig. 10 (Vannote & Sweeney 1980))
• In cold weather (e.g., February) you can find small aerial aquatic insects along Poudre R. (midges, Chironomidae)
• How do they survive?
• Which *life cycle* type would you put them in?
• What kind of *voltinism* would they exhibit?
• What *emergence cue* would they use?
Aquatic Insect Life Cycles – variable responses to multiple selective forces

Eggs can hatch:
- Immediately → single juvenile cohort
- Delayed, then all at once
- Continuously → multiple cohorts

Adults can emerge:
- Synchronously (all at once)
- Asynchronously (spread over time)

Females can lay eggs all at once (short-lived) **or multiple times** (longer-lived)

Aquatic

Egg → Juvenile instars → (Pupa) →
GROWTH & DEVELOPMENT

Terrestrial

Adult
EMERGENCE

Time

Temperature

Autumn | Winter | Spring | Summer
EVOLUTION
– maximizes individual fitness
\[\rightarrow \text{maximize growth (g) and minimize mortality risk (µ)} \]

Why maximize g?

How to maximize g?

Avoid competition?
(Similar species often develop at different times and thus avoid larval overlap). This pattern reflects evolutionary strategy.

Larger female size \rightarrow more eggs

FIGURE 5.14 Larval growth period for five species of riffle-inhabiting ephemeralid mayflies in White Clay Creek, Pennsylvania. (●) Ephemera simulata; (▲) E. dorothea; (□) Seratella deficiens; (■) S. serrata; (inverted open triangle) Eurypleusa verisimilis. (Reproduced from Sweeney and Vannote 1981.)
How minimize μ?

What are sources of mortality risk?

<table>
<thead>
<tr>
<th></th>
<th>Biotic</th>
<th>Abiotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juvenile (aquatic)</td>
<td>Predation (invertebrates, fish)</td>
<td>Disturbance (frequency and intensity)</td>
</tr>
<tr>
<td>Adult (terrestrial)</td>
<td>Predation (insects, spiders, birds)</td>
<td>Air temperature (limited aerial season?)</td>
</tr>
</tbody>
</table>

The relative strength of these sources of mortality factors can vary a lot in different streams and regions!
Upshot:

Over evolutionary time species have “balanced” the interacting selective factors that influence growth and mortality of both juveniles and adults in an attempt to maximize fitness. This results in a very wide range of life cycle strategies, including:
- number of generations per year
- egg development time and synchrony of hatching
- timing and synchrony of adult emergence

Some of these strategies are “fixed” by evolution; others are more plastic and can vary within a species among streams and regions, reflecting the local environmental selection forces that affect the balance of growth and mortality in the juvenile and adult life stages.