Multi-scale determinants of secondary production in Atlantic salmon (Salmo salar) streams

N. LeRoy Poff and Alexander D. Huryn

Abstract: Understanding variation in the freshwater production of Atlantic salmon across its range is a critical aspect of the species’ conservation, restoration, and management. We focus on how environmental factors operate at four hierarchical scales (region, watershed, reach, local habitat) to influence the production and survivorship of juvenile salmon and the production of their invertebrate food base. Using published, quantitative information about invertebrate production in small, cold streams characteristic of Atlantic salmon nursery streams, we estimate expected maximum salmon production will be ca. 9 (range 6–22) g wet mass·m⁻²·year⁻¹, which compares favorably with reported literature values of <1 to 17 g·m⁻². We highlight some empirically based, shortcut approaches to estimating invertebrate production that may be particularly useful for evaluating salmonid production across a range of scales. We also consider how availability of invertebrate prey may influence salmon production. As a synthesis, we integrate existing information into a multi-scale framework by making qualitative predictions (hypotheses) about expected patterns of invertebrate and salmon production at different habitat scales. We then develop quantitative, heuristic scenarios that predict (hypothesize) how salmon and invertebrate production will change in response to selected physicochemical and non-trophic habitat limitations operating at the watershed (geology, land use) and reach (channel form, canopy) scales. Predicted values, which fall within the range of observed values for Atlantic salmon streams, demonstrate that a multi-scale habitat perspective can provide important insights into local to regional variation in the production of Atlantic salmon across its range and thus contribute to Atlantic salmon conservation, restoration, and management.

Résumé: Il est primordial de comprendre la variation dans la production dulcicole du saumon atlantique dans son aire de répartition pour assurer la conservation, le rétablissement et la gestion de cette espèce. Nous mettons l’accent sur la manière dont les facteurs environnementaux agissent à quatre échelles hiérarchiques (région, bassin, tronçon de cours d’eau et habitat) pour influer sur la production et la survie des saumons juvéniles, de même que sur la production des invertébrés dont ils se nourrissent. À l’aide de données quantitatives publiées sur la production d’invertébrés dans les petits cours d’eau froids qui constituent typiquement les alevinières du saumon atlantique, nous estimons la production de saumon maximale attendue à environ 9 (fourchette de 6 à 22) g de poids frais par m² et par année, ce qui se compare favorablement aux valeurs signalées dans la documentation scientifique (<1–17 g·m⁻²). Nous présentons des méthodes empiriques abrégées d’estimation de la production d’invertébrés qui peuvent être particulièrement utiles pour évaluer la production de saumonidés à diverses échelles. Nous examinons aussi comment la disponibilité des invertébrés proies peut influer sur la production de saumons. À titre de synthèse, nous constituions avec les données existantes un cadre multi-échelles en faisant des prévisions qualitatives (hypothèses) concernant les profils attendus de production d’invertébrés et de saumons à différentes échelles d’habitat. Nous établissons par la suite des scénarios heuristiques quantitatifs qui prévoient (de manière hypothétique) comment la production d’invertébrés et de saumons changera en fonction de facteurs physicochimiques et non trophiques limitants liés à l’habitat et agissant aux échelles des bassins (géologie, utilisation des terres) et des tronçons de cours d’eau (forme du chenal, couvert végétal). Les valeurs prévues, qui tombent dans la fourchette des valeurs observées pour les cours d’eau à saumon atlantique, montrent qu’une approche prenant en compte l’habitat à diverses échelles peut fournir des perspectives intéressantes sur la variation aux échelles locale à régionale de la production du saumon atlantique dans l’ensemble de son aire de répartition, et ainsi contribuer à la conservation, au rétablissement et à la gestion de l’espèce.

[Traduit par la Rédaction]

Introduction

The freshwater phase of the Atlantic salmon (Salmo salar) life cycle is a critical period in which reproduction, early growth, and survivorship set limits to production. Between spawning and smolt outmigration, production of young salmon depends on at least three broad environmental factors: an adequate food supply, suitable physical habitat, and...
favorable physicochemical conditions. Juvenile salmon production can be limited by any one of these factors, a fact long appreciated (e.g., Lindroth 1965; Chapman 1966a). However, their relative importance is poorly understood, as is the extent to which they may interact to limit salmon production or change geographically in response to landscape and climatic features. A better understanding of these factors and their interactions is needed to facilitate the conservation, restoration, and management of Atlantic salmon.

Production is an integrated response to constraints and opportunities posed by abiotic and biotic processes and conditions that occur at a variety of spatial and temporal scales. Accordingly, production provides a comprehensive measure of ecological performance. Identifying spatial and temporal scales at which factors limiting production are most effectively expressed should improve our understanding of landscape variation in Atlantic salmon production. The hierarchical conception of stream habitat (e.g., Frissell et al. 1986) is most suitable for this task because it provides a multi-scale framework for assessing factors operating at different scales, ranging from local habitat to whole watersheds to geographic regions. By calling attention to multiple constraints and processes, a multi-scale framework provides a general and realistic approach for the examination of ecological patterns (e.g., Imhof et al. 1996; Rabeni and Sowa 1996; Richards et al. 1996; Poff 1997). A better understanding of multi-scale constraints on Atlantic salmon production will allow us to better define the productive capacity of present populations and better identify areas where conditions could support viable salmon populations in the future.

In this paper, we consider how environmental conditions, habitat features, and invertebrate production limit salmon production in a multi-scale context (Fig. 1). Habitat and environmental conditions may directly limit salmon production by influencing survivorship, or they may indirectly limit salmon production by influencing prey production and availability. Because invertebrate production represents the transformation of a stream’s energy base to a form available to juvenile salmon, consideration of different pathways providing support for invertebrate production in salmon nursery streams is necessary before fundamental factors that may limit salmon production can be identified. Although obvi-
ously not the only factor limiting salmon production, we pay particular attention to invertebrate prey production, because knowledge of this factor will allow guesses about maximum potential production of juvenile salmon (Richardson 1993). Despite the importance of prey production in determining salmon production, knowledge about this critical aspect of salmonid ecology in general, and Atlantic salmon ecology in particular, is surprisingly obscure (Waters 1993; Richardson 1993; Huryn 1996).

Secondary production

In its broadest sense, "secondary production" refers to the formation of heterotrophic biomass over time (Benke 1993). Annual secondary production for a population of juvenile Atlantic salmon inhabiting a specific nursery stream, for example, will be the sum of all biomass produced by that population during a 1-year period (e.g., g·m⁻²·year⁻¹). This summed production will include the new biomass actually remaining at the end of the year and all losses that occurred during that year. Losses may include mortality (disease, cannibalism, predation), loss of tissue reserves (starvation and mucus production), and emigration. Secondary production thus clearly differs from other measures commonly used to indicate the productivity of salmon nursery streams. "Smolt production," for example, refers to the number of smolt that leave a given nursery stream (e.g., smolt area⁻¹·time⁻¹; Meister 1962; Mills 1989; Power and Power 1992). Although of obvious importance for management concerns, indicators such as smolt production do not necessarily provide information about the actual energy base of a given stream or how this energy is apportioned among different functional and trophic pathways.

Measurement of secondary production, at minimum, requires information about growth rate and biomass for the target population. Growth rate can be measured either directly from marked or confined individuals (invertebrates, fish), or as a function of size-at-age as indicated directly by growth rings deposited in bony structures (fish) or indirectly by population size structure (invertebrates, fish). The numerous methods for directly estimating secondary production are summarized in the excellent reviews by Bagenan (1978) and Benke (1984; 1993). Obtaining estimates of production for fish populations in small streams is relatively easy. For their invertebrate prey, however, such is not the case, due both to the large number of samples required for reasonably precise estimates of biomass in systems that are notoriously variable in space and time, and to difficulties in removing cryptic invertebrates from samples. Further, estimates of invertebrate secondary production for *entire stream communities* must be composites of measurements conducted separately for numerous species of consumers that may differ markedly in life histories and habitat distribution. Because of these difficulties, there are relatively few whole system estimates of macroinvertebrate production in streams and rivers (~40 streams; Benke 1993), even fewer for salmonid streams (~12 streams; Waters 1988; Huryn 1996). To our knowledge, there are no estimates for streams that currently support populations of Atlantic salmon; however, estimates do exist for two tributaries of the Connecticut River (Massachusetts) that probably contained populations of Atlantic salmon early in the nineteenth century (Fisher 1977; Neves 1979).

Given the high labor costs required to directly measure invertebrate production, shortcut approaches are needed. Of the several offered (Benke 1984; 1993), two seem to hold reasonable promise. The first is based on the annual biomass turnover rate (annual production/mean annual biomass), or "P/B," which is a rough estimator of the average annual instantaneous growth rate for the target population. Waters (1969) showed that the P/B for cohorts within populations of invertebrates fell within a relatively narrow range (2–8), and suggested that *cohort production* might be estimated as the product of biomass and a suitable P/B (5 is usually suggested). When entire benthic communities are considered, however, the range of P/Bs for *annual production* varies from <1 to 117 because cohorts of different taxa may require periods of several weeks to several years (Benke 1993). The range of expected annual P/Bs can be narrowed by considering only small temperate streams (e.g., mean discharge <0.1 to 1.0 m³·s⁻¹ and mean annual temperature 5–10°C), where annual P/Bs range from 2.2 to 8.7 (10 streams) or from 4.2 to 7.9 (7 streams) (Benke 1993). The P/B approach for estimating production also has applications for fish as well as invertebrates. The P/B for populations of brown trout (*S. trutta*), for example, can be accurately estimated as a function of age structure (Waters 1992; see also Kwak and Waters 1997).

The second genre of promising shortcut approaches is the development of multiple regression models that estimate invertebrate production as a function of more readily measured variables, usually temperature, population biomass, and maximum body size (Morin and Bourassa 1992; Benke 1993; Morin and Dumont 1994; Benke et al. 1997). Similar equations are available for stream fish populations (e.g., Randall et al. 1995). The potential for estimating annual production of juvenile Atlantic salmon as a function of standing stock biomass, either mean annual or measured at a specific time of the year, is apparent from plots provided by Gec et al. (1978) and Randall and Paim (1982). The empirical approach has been criticized because it is prone to impr precision and inaccuracy, particularly when used to estimate production for single species at a single location (Benke 1993). However, the estimation of production for entire communities or species of groups (e.g., functional groups) as summed composites of estimates for single populations may increase the accuracy of this method (Benke et al. 1997). Indeed, using a variation of the regression approach, Benke (1993) and Webster et al. (1995) showed that production of invertebrate functional feeding groups (sensu Cummins 1973) may be estimated as various linear and polynomial functions of stream size (as indicated by mean annual discharge). These equations are particularly compelling because they may allow invertebrate production to be partitioned into categories of prey that differ in availability and quality (e.g., assimilability) for salmonids (cf. Wootton et al. 1996; Rader 1997), show different levels of dependence of secondary production on riparian and watershed energy and nutrient sources (Doucett et al. 1996), and follow patterns that may change with stream size in predictable ways (Vannote et al. 1980). The testing and refinement of the application of such empirical approaches for estimating secondary production merits fur-
ther research because they may be particularly useful for estimating biologically reasonable ranges of production at large spatial scales required for multi-scale studies of stream ecosystem processes (e.g., among general categories of streams).

Evidence for food-limitation of salmonid production

Published research on stream salmonids suggests that limitation of Atlantic salmon production by invertebrate production cannot be easily dismissed, especially in nutrient-poor waters (see Richardson 1993). Several studies have shown positive correlations between food abundance in streams and salmonid growth rates (Wilzbach et al. 1986; Erkino and Niemela 1995), biomass (Murphy et al. 1981; Bowlby and Roff 1986b) and abundance (Stanley and Northcote 1974). Experimental support for food-limitation of fish in salmonid streams also exists. In an early study, Mason (1976) amended food supply to juvenile coho salmon (Oncorynchus kisutch) in British Columbia headwater streams and observed an increase in growth rates and lipid storage. Peterson et al. (1993) used stable isotope analysis to show that the addition of inorganic fertilizer to an oligotrophic Alaskan river resulted in rapid increases in benthic algal and insect production; within 3 years, increased growth rates of young-of-year and adult grayling (Thymallus arcticus) were attributed directly to enhanced algal production. Similarly, in a forested British Columbia stream, nutrient addition stimulated primary productivity and increased the weights of two species of salmonid fry (Johnston et al. 1990).

In Atlantic salmon streams, however, there is mixed evidence for food limitation. Studies showing a positive relationship between prey abundance and salmon biomass (e.g., Egglishaw 1967; Gibson and Galbraith 1975; Gibson and Dickson 1984), and density-dependent growth cohorts of Atlantic salmon in Norway (Berghjem and Hesthagen 1990; Heggenes and Borzstrom 1991) suggest that food limitation can occur. In addition, Erkino and Niemela (1995) showed that high growth rates of Atlantic salmon among tributaries of a Finland stream system were related with high levels of drifting prey. By contrast, however, a 10-year study of juvenile Atlantic salmon production in the Miramichi and Restigouche rivers (New Brunswick) showed that annual variation in growth rate was minimal and independent of fish abundance (Randall and Chadwick 1986). Production was most closely related to population abundance and biomass rather than growth rate. Since food limitation was clearly not a factor in determining production, Randall and Chadwick (1986) suggested that non-trophic factors that influenced recruitment — overfishing of adult salmon was specified — controlled abundance and maintained juvenile salmon production below carrying capacity. Gee et al. (1978) similarly reported that production of Atlantic salmon in the River Wye (Wales) was controlled by spawning success rather than prey availability.

Guesses about trophic support for juvenile Atlantic salmon

Waters (1988) reviewed studies of salmonid – invertebrate production relationships worldwide to show that maximum levels of annual production by populations of stream dwelling salmonids (primarily brown trout) ranged to 36 g wet mass (WM) m\(^{-2}\), with levels >10 g WM m\(^{-2}\) indicating “productive” streams. Similar data for populations of juvenile Atlantic salmon, however, are scarce. Randall and Chadwick (1986) summarized production data for seven streams around the North Atlantic to show that mean annual production ranges from <1 to about 9 g WM m\(^{-2}\). The maximum levels of annual production yet reported are 16–17 g WM m\(^{-2}\) (Mann 1971; Berghjem and Hesthagen 1990). It is clear that production by juvenile Atlantic salmon can attain levels expected for productive trout streams.

Wet mass can be converted to ash-free dry mass (AFDM), which is more easily used for comparisons, using conversion factors provided by Waters (1988). The mean annual production of 8.9 g WM m\(^{-2}\) reported for Atlantic salmon in the Shelligan Burn (Egglishaw and Shackley 1977), for example, is roughly equivalent to 1.6 g AFDM m\(^{-2}\), year\(^{-1}\). Based on a food conversion efficiency of 0.2 for salmonids (Waters 1988), 1.6 g AFDM of annual salmon production will require roughly 8.0 g AFDM m\(^{-2}\) of annual prey production with 100% utilization.

Egglishaw (1970) reported that the mean standing stock of benthic fauna in the Shelligan Burn measured during a single year (1962–1963) was 2.9 g dry mass (DM) m\(^{-2}\) (roughly equivalent to 2.6 g AFDM m\(^{-2}\)). Egglishaw and Shackley (1985) later reported a standing stock of 1.2 g DM m\(^{-2}\) (~1.1 g AFDM m\(^{-2}\), a value presumably based on a survey conducted in 1969–1970 (Egglishaw and Shackley 1977). Assuming that the mean of these values estimates the expected standing stock of prey during the study, the turnover rate required to provide prey production that matches the estimated consumption is 4.2 (~8.0/1.9). This turnover rate is clearly realistic, given that turnover rates as high as seven are not unexpected for benthic invertebrate communities in temperate streams similar in size (mean discharge = 0.12 m\(^{3}\) s\(^{-1}\)) and mean temperature (~7°C) (Benke 1993).

Atlantic salmon are not the only species of fish in the Shelligan Burn, however. There are also populations of brown trout and eels (Egglishaw and Shackley 1977). The combined mean annual production of brown trout and Atlantic salmon during the study was 19.2 g WM m\(^{-2}\) (~3.5 g AFDM m\(^{-2}\); eel production was not measured). The turnover rate of benthic invertebrate biomass required to support this combined production is roughly 9.2. This turnover rate is unreasonably high (Benke 1993). The preceding calculations are based on the assumption that both trout and salmon feed exclusively on benthic invertebrates. Egglishaw (1970), however, reports that terrestrial invertebrate prey may comprise ~30% of total prey consumption by brown trout, and ~23% for Atlantic salmon in the Shelligan Burn. Assuming that consumption of terrestrial prey is only 20%, the turnover rate of benthic prey required to meet the demands of both trout and salmon is 7.4. Although in the high range expected for streams similar to the Shelligan Burn, this turnover rate is clearly realistic (cf. Benke 1993), and is similar to the turnover rate of 7.1 to 7.4 reported by Neves (1979) for macroinvertebrates associated with cobble habitat in what was presumably an historical Atlantic salmon stream in New England.
A probable maximum amount of invertebrate prey production expected for salmon streams can be determined, using a summary table provided by Benke (1993). Streams with a mean annual temperature ≤8.5°C and mean annual discharge ≤1 m³·s⁻¹, and without significant organic pollution, are expected to have levels of invertebrate production ranging from about 4 to 24 g AFDM·m⁻²·year⁻¹, with values ≤8 g AFDM·m⁻²·year⁻¹ being most common (7 out of 9 reports, Benke 1993). Assuming a 20% energetic efficiency (Waters 1988), and assuming that no prey production is lost to pathways other than salmon predation, the maximum salmon production expected for nursery streams will range from about 0.8 to 4.8 g AFDM·m⁻²·year⁻¹ (=6 to 22 g WM), with levels of about 1.6 g AFDM·m⁻²·year⁻¹ (=8.9 g WM) the most reasonable maximum expected level. These estimates reflect reported literature values of annual salmon production that range from <1 to about 9 g WM·m⁻², with an extreme maximum of 17 g WM·m⁻² (Mann 1971; Randall and Chadwick 1986).

On the basis of these admittedly “back of the envelope” calculations and sparse data, it appears that the higher ranges of production reported for Atlantic salmon streams may be accommodated by reasonable levels of benthic prey production. However, it should also be noted that production by predatory invertebrates and other fish will also require some of the benthic prey production which will reduce that available to salmon. Accordingly, since it appears that a significant proportion of prey production may at times be required to support juvenile salmon production, the potential for the coupling of these two compartments can be strong. Terrestrial invertebrates may also provide an important subsidy to the diet of juvenile salmon that will reduce pressure on benthic prey, yet the quantitative significance of terrestrial invertebrates as a source of food for salmon is poorly understood. Finally, it should be noted that over the 10-year period that Atlantic salmon production was measured in the Shelligan Burn, annual production ranged more than two-fold (5.5 to 12.1 g WM·m⁻²; Eglishaw and Shackley 1977). Factors underlying such long-term temporal variation must be identified before a predictive knowledge about the interrelationship between production of Atlantic salmon and their prey can be attained.

Is “invertebrate production” equivalent to “prey production” for juvenile Atlantic salmon?

Benthic prey

Juvenile Atlantic salmon are opportunistic foragers, able to switch between benthic and drift feeding depending on relative abundance of preferred prey (e.g., Gibson 1993). Recent experimental work, however, indicates that salmon part spend a majority of their time feeding directly from the drift, even when drift availability is locally reduced (Nislow et al. 1998). Therefore, it would appear that juvenile salmon acquire much (if not most) of their energy by drift feeding, and factors that reduce the availability of drifting invertebrates to salmon may present a bottleneck to salmonid production.

Benthic invertebrates have different tendencies to drift and are thus differentially available to drift-feeding salmonids (Waters 1972). Compared to species that are common components of drift, those that do not drift frequently will be less available to salmonids, either because they are cryptic (e.g., some cased caddisflies) or because they are inaccessible (e.g., interstitial fauna). Recent work showing competitive suppression of palatable, drifting prey by invulnerable prey (Power et al. 1996; Wootton et al. 1996) indicates that estimates of gross invertebrate production alone may not be sufficient to understand limits on salmon production; consideration of community composition and relative availability of potential prey may also be required. If this is the case, then a functional approach that characterizes the availability of invertebrate guilds to drift-feeding salmonids would be valuable. Ideally, guilds should be defined to satisfy two conditions: (1) differential availability to salmon predators (to translate benthic production to potential salmon production), and (2) differential sensitivity to environmental conditions (to understand landscape variation in conditions that constrain invertebrate guild availability).

The ecological implications of differential availability have recently been examined by Rader (1997), who classified 95 benthic invertebrate taxa in the central Rocky Mountain region (U.S.A.) into availability guilds for drift-feeding salmonids. He used a number of behavioral and microhabitat preference characteristics that are likely to influence drift entry (e.g., mobility, exposure to flow, body size). When ranked according to availability, the taxa showed significant correlations with the actual ranks of invertebrates in trout stomach contents as reported in three published studies. The most available taxa included the mayfly Baetis, blackfly (Simuliidae) larvae, and amphipods, all widely distributed and known as “drifters” (e.g., Waters 1972). The most unavailable taxa consisted mostly of species occupying hyporheic or depositional habitats (including burrowing species). Taxa with intermediate availability occurred in erosional areas, but were not generally found in microhabitats fully exposed to flowing water. In general, species that actively swim or drift and reside in flow-exposed microhabitats (e.g., Baetis and simulids) are most available to drift-feeding salmonids. These findings imply that, all other factors being equal, Atlantic salmon production should be greater in streams having high relative production of these drifting invertebrate species.

Terrestrial prey

Terrestrial invertebrates may at times be important sources of food for stream fishes in general (Chapman 1966b; Hunt 1975; Waters 1993), and juvenile Atlantic salmon in particular (Eglishaw 1970; Gibson and Cunjak 1986). Terrestrial invertebrates, for example, have been shown to be important prey for juvenile Atlantic salmon in Scotland and Newfoundland (Eglishaw 1970; Gibson and Cunjak 1986), and they are almost certainly important across the Atlantic salmon’s entire range. These studies indicated that terrestrial invertebrates may at times compose >20% of the stomach content. Such reports, however, tend to obscure how seasonal patterns of the relative availability of prey in salmon streams may magnify the importance of terrestrial sources of prey to salmon survival. In heavily forested, oligotrophic streams, in particular, the life cycles of many invertebrate species are synchronized with the input of leaf detritus during the autumn. Growth occurs during autumn and spring,
with adult insects emerging in late spring and early summer. As a result, the biomass of benthic invertebrate prey may be at its lowest point during summer, when metabolism of salmon is maximal due to summer water temperatures (Hynes 1970; Hunt 1975; Cada et al. 1987; Garman and Moring 1993). The summer period may represent an energetic “bottleneck,” and the importance of terrestrial invertebrates to the survival of juvenile salmon may be much greater than indicated by quantitative considerations of stomach content alone. Mason (1976) supported this view by showing that growth and survival of coho salmon in British Columbia was food-limited during the summer months, and that salmon size and density were increased several fold by experimental feeding. If a similar relationship occurs in Atlantic salmon streams, riparian inputs of terrestrial invertebrates have clear implications for management of salmon streams for maximum salmon production. This aspect of Atlantic salmon ecology is poorly understood.

A multi-scale framework for considering prey and Atlantic salmon production in streams

The importance of scale

Consideration of multi-scale constraints on ecosystem structure and function is an area of growing interest in stream ecology (e.g., Frissell et al. 1986; Rabeni and Sowa 1996; Poff 1997), and we suggest that a multi-scale perspective will be useful in assessing and predicting variation in Atlantic salmon production across the diverse landscapes that comprise its range. The physical structure of streams can be conveniently defined using a hierarchy of spatial scales (e.g., Frissell et al. 1986). Because environmental factors that limit either prey production or non-trophic habitat needs of Atlantic salmon operate at different scales, a focus on only one scale may result in a failure to identify limiting factors associated with another scale (see Rabeni and Sowa 1996).

Over its life span, the highly mobile, anadromous Atlantic salmon clearly experiences environmental and ecological factors occurring over a wide range of spatial and temporal scales (Folt et al. 1998). We focus on four of what we consider to be critical hierarchical spatial scales and then consider how selection of a particular scale of observation may influence perceptions of the importance of different factors that control Atlantic salmon production. Where possible, we also consider how these factors vary at different temporal scales, because temporal variability is a critical structuring force in running water ecosystems (Resh et al. 1988; Poff and Ward 1989, 1990; Townsend and Hildrew 1994; Poff et al. 1997).

The habitat hierarchy

Regional scale

At the regional scale, climate and biogeography are the most important factors that may regulate salmonid production. Climate determines thermal regime, amount and timing of runoff, and vegetation potential. Across the range of Atlantic salmon, clear regional differences in these climatic factors are evident (see Elliott et al. 1998). More northerly streams tend to have longer winters with extensive ice cover, and shorter, cooler summers than more southerly or northern maritime streams. The scouring effects of catastrophic ice breakup, for example, will be more pronounced in northern streams. Southern streams may have potential for higher invertebrate and salmon production because of a longer growing season. Warmer summer temperatures, however, may directly limit the growth potential of salmonids. Southern streams will also tend to have relatively less late-spring and summer discharge because of less precipitation storage as snow.

The role of biogeography in determining levels of production at the regional scale has received very little attention. The correlation between benthic invertebrate community composition and regional patterns of vegetation is well known (Ross 1963; Cummins et al. 1989); however, the influence that this relationship has on Atlantic salmon throughout a broad region that includes temperate hardwood forests, boreal coniferous forests, and taiga is unknown. Assuming that growth of juvenile Atlantic salmon is prey limited at times, regional factors that have strong bearing on food quality and quantity for invertebrates as well as the composition of prey communities may have subtle but probably significant effects on their production.

Watershed scale

Geology, vegetation cover, and land use are probably the major determinants of salmonid production at the watershed scale. Bedrock geology regulates the types and quantities of nutrients available for dissolution and also influences stream thermal regime. Streams draining watersheds with carbonate bedrock, for example, tend to have higher concentrations of dissolved ions and less variable thermal and hydrologic regimes, and support higher levels of total secondary production compared to streams draining other bedrock types (Krueger and Waters 1983; Huryn et al. 1995). Streams draining watersheds with deep glacial deposits also tend to have high thermal and hydrologic stability and may support higher levels of invertebrate production compared to streams draining watersheds with shallow soils (Krueger and Waters 1983). Watershed vegetation cover, land use and land-use history interact to influence secondary production in streams by numerous direct and indirect pathways, including hydrology, light, thermal regime, water chemistry, channel sediments and morphology (Freeman and Wallace 1984; O’Hop et al. 1985; Wallace and Gurtz 1986; Sallenave and Day 1991; Grubaugh and Wallace 1995; Sanchez and Hendricks 1997).

Reach scale

A stream reach is defined here as a length of stream channel that incorporates several local habitats. The distribution and abundance of local habitats are dictated by channel morphology and riparian conditions (Gregory et al. 1991). At the reach scale, stream width has long been identified as a central determinant of food quality and quantity, primarily because of its effect on the relative influence of riparian vegetation on stream energy budgets (Vannote et al. 1980). Habitat complexity also has important influences on reach-scale patterns of production by invertebrates (Huryn and Wallace 1987). Reaches that are constrained by bedrock will tend to
have reduced habitat complexity and hyporheic volume, and faster through-flow of organic matter and nutrients compared to unconstrained, alluvial reaches (Gregory et al. 1991). Such reaches are predicted to have high proportions of low-productivity habitat (e.g., bedrock run and glide) and lower levels of invertebrate and fish production compared to unconstrained reaches (e.g., alluvial cobble-riffle). This relationship is poorly defined, however, and may become inverted, for invertebrates at least, in bedrock-constrained reaches with an abundant cover of aquatic mosses (Grubaugh et al. 1997). Reaches that are separated by selective barriers to fish movements, such as waterfalls or beaver dams, may show differences in fish community structure (Crowl et al. 1992; Schlosser 1995) that may affect levels of reach productivity because of cascading effects within food webs (Huryn 1998).

Local-habitat scale

Water depth, velocity, and type of substratum are often used to identify spatially distinct channel features designated here as local habitats (or channel unit habitats — Hawkins et al. 1993). Local-habitat type, such as riffle or pool, strongly influences the local distribution and abundance of aquatic fauna, both invertebrates (Huryn and Wallace 1987) and fish (Angermeier 1987; Schlosser 1991). Secondary production in high-gradient headwater streams tends to be relatively uniform among habitats, largely because of high levels of production in debris-dam pools (Huryn and Wallace 1987). In lower gradient streams with more mobile beds, however, riffle habitats are usually considerably more productive than pools (Fisher 1977; Bowby and Roff 1986a; Grubaugh et al. 1997). Not only can habitat influence the production of prey biomass, but by influencing their community structure, this factor can also influence the relative availability of quality prey to drift feeding salmonids (Rader 1997).

Factors that determine prey production in Atlantic salmon streams

Secondary production is essentially the product of the growth rate and biomass of an animal population, and the numerous factors that determine production will generally operate upon these variables. There are available a number of excellent reviews of factors affecting growth and production of stream invertebrates (Resh and Rosenberg 1984; Benke 1993). Rather than providing a comprehensive treatment of all factors identified as significant in this regard, we attempt to highlight factors that may be significant for Atlantic salmon streams in particular.

Temperature

Temperature directly regulates rates of metabolism, growth, and development in stream invertebrates (Sweeney 1984). Atlantic salmon streams are largely restricted to the boreal or sub-boreal biomes, which are characterized by short summers and long, cold winters. Accordingly, P/B ratios are expected to be low in Atlantic salmon streams, due both to the short length of the growing season and to the relative dominance in these streams of invertebrate species that generally do not produce more than one generation per year (Clifford 1982; Jacobi and Benke 1991). At the watershed scale, bedrock geology, vegetative cover, and land use influence thermal regime, by regulating soil temperatures and the degree to which precipitation infiltrates into the soil and moves as groundwater to the stream. Large contributions of groundwater to stream discharge, for example, will moderate thermal extremes by buffering against cold winter conditions in northern regions or warm summer conditions in southern regions of the Atlantic salmon’s range. Large-scale removal of forest cover due to clear cutting or row cropping, on the other hand, will enhance thermal extremes because of its effect on temperatures of soil and infiltrating precipitation. Thermal regimes are also influenced by reach-scale features, such as riparian cover or the relative proportion of deep pools that reduce rates of heat exchange with the atmosphere. Finally, variation in thermal regime among local habitats has been shown to influence spatial patterns of invertebrate growth rates and may therefore have consequences for prey production (Gresens 1997).

Food

Invertebrate growth rates are strongly influenced by food quality (Hill 1992) and quantity (Richardson 1991). The quality of food type is determined both directly and indirectly by vegetation cover, and this has important effects on the structure of prey communities for Atlantic salmon. The quality, quantity, and timing of input of terrestrial detritus to streams may vary considerably in quality at regional scales across the range of the Atlantic salmon (e.g., hardwood detritus in the south, softwood detritus in the north), with this variability being reflected by differences in community structure, life histories and probably production dynamics of resident macroinvertebrate populations (Ross 1963; Cummins et al. 1989). Latitudinal trends in vegetation will also affect water chemistry, with acidic streams — often characterized by low levels of invertebrate production (Krueger and Waters 1983) — being more widespread at higher latitudes. At more local scales, e.g., in locations approaching or exceeding the timberline (either high altitude or high latitude), or in wide and shallow rivers, the absence of canopy-forming vegetation may produce a change in primary energy source, from terrestrial detritus to algae, which will be correlated with changes in macroinvertebrate community structure and production (Wiggins and Mackay 1978; Vannote et al. 1980; Behmer and Hawkins 1986). Nutrient concentrations are also important determinants of food quality and quantity and will vary widely throughout the range of the Atlantic salmon depending on regional geology and watershed land-use. Limited information indicates that moderate levels of agricultural land-use actually enhance Atlantic salmon production because of associated inputs of nutrients to otherwise oligotrophic streams in Europe (Kennedy et al. 1983; Bergheim and Hesthagen 1990). Presumably this increase is due to bottom-up control of prey production (cf. Johnston et al. 1990; Peterson et al. 1993).

Disturbance

Although poorly studied, the effects of winter freezing and subsequent ice breakup on aquatic invertebrate production are probably particularly important regional-scale factors influencing the productivity of Atlantic salmon streams. Ice breakup and associated flooding, which has been shown to cause large increases of drifting insects and detritus in
northern rivers, are likely a critical determinant of annual patterns of prey biomass and species composition (Hudon 1994). The effect on invertebrate production dynamics of floods not associated with ice breakup will be a function of hydrologic regime and substratum stability (Scarsbrook and Townsend 1993). The timing and frequency of floods relative to life cycle stage of the invertebrates (e.g., winter or summer, cf. Hudon 1994; Huryn et al. 1995) and the presence of channel refugia during floods (Scarsbrook and Townsend 1993; Palmer et al. 1996) can influence magnitude of biomass loss. Regional differences in climate and watershed or reach differences in sediment size and mobility will interact to influence the local importance of disturbance in any particular Atlantic salmon stream. In general, however, the fact that many invertebrates in north temperate and boreal streams require at least 1 year to complete their life cycles implies that recovery of biomass due to scouring floods will be slow, especially when contrasted with streams in regions having communities of invertebrates characterized by rapid growth rates and short life cycles (e.g., Fisher and Gray 1983). Accordingly, the reduction of invertebrate biomass by scouring floods, especially those associated with ice breakup (Hudon 1994), implies reduced food supply for Atlantic salmon on an annual scale. Understanding the effects of ice breakup is probably crucial to understanding long-term variability of production dynamics in Atlantic salmon streams.

Biotic interactions

Although poorly studied, regional invertebrate-species pools may influence the proportion of total prey production readily available to salmon. Wootton et al. (1996), for example, observed that the abundances of palatable prey species in California streams that support high growth rates in juvenile steelhead trout (O. mykiss) can be reduced by the presence of a caddisfly species (*Dicosmoecus*) that is invulnerable to predation. *Dicosmoecus*, along with other invulnerable invertebrates (e.g., aquatic moth larvae), tends to dominate in drought years when scouring floods are rare (Power 1992), suggesting that interannual variation in climate may indirectly influence production by steelhead trout via production dynamics of prey communities. The extent to which regional differences in dominant, invulnerable species may influence prey availability to Atlantic salmon (or other stream predators) and thus potentially limit salmon production is virtually unknown.

Regional patterns of the composition of fish assemblages may also have consequences for production by their invertebrate prey. Some invertivorous fish species, for example, may depress prey production directly by reducing prey biomass more effectively than others (Huryn 1998) or indirectly by affecting invertebrate feeding behavior (see below). Because of these differences in feeding behavior, different assemblages of fish will probably have different effects on their prey populations. Studies of how biogeography controls community interactions, and how these interactions may function to regulate secondary production over large areas will enhance understanding of factors contributing to variation in Atlantic salmon production at the regional scale.

On the local habitat-scale, interspecific competition (Hill 1992) and the non-lethal effects of predators (McPeek and Peckarsky 1998) have been shown to result in a decline in invertebrate growth rates. The effects of this latter factor are currently receiving a great deal of attention because, although subtle, they are clearly widespread and of substantive quantitative significance (McPeek and Peckarsky 1998). This is because avoidance behavior by benthic insects in response to their salmonid predators usually results in a reduction in time spent feeding, which may have consequences for rates of larval growth and development as well as fecundity of adults (Ball and Baker 1996; McPeek and Peckarsky 1998). A reduction in growth or feeding activity may ultimately affect levels of secondary production by prey populations and primary producers, which in turn may influence production dynamics of adjacent trophic levels (Flecker and Townsend 1994; McIntosh and Townsend 1995; 1996; Peckarsky and McIntosh 1998). It is important to note that although avoidance behavior by invertebrates operates at a relatively local scale (e.g., local habitat), factors that affect the distribution of their salmonid predators are probably controlled by factors operating at the reach, watershed, or regional scale (e.g., Crowl et al. 1992).

Terrestrial invertebrates

Although there have been many studies demonstrating that terrestrial invertebrates are consumed by stream fishes, only a handful have attempted to directly quantify the importance of this food source to fish production or to determine factors that influence quantities of terrestrial invertebrates that enter streams (Nelson 1965; Mason and Macdonald 1982; Edwards and Huryn 1995, 1996; Huryn 1996; Cloe and Garman 1996; Wipfli 1997). The most recent research has answered questions about how different riparian management activities influence terrestrial inputs to streams (Edwards and Huryn 1996) and how riparian zones might be modified to enhance this food source (Wipfli 1997). Edwards and Huryn (1996), for example, showed that salmonid streams in New Zealand with riparian zones with either forest or native grasses received significantly greater amounts of terrestrial invertebrates compared to streams bordered by pasture. Wipfli (1997) found that the species composition and successional stage of riparian vegetation along forested streams in Alaska can influence the availability of terrestrial invertebrates to juvenile coho salmon.

Non-trophic constraints on Atlantic salmon production

Close coupling between Atlantic salmon and prey production is not expected if factors other than prey production and availability have strong effects on salmonid growth or mortality (e.g., Gibson et al. 1993; Gotceitas and Godin 1993). The potential impact of such “non-trophic factors” on any particular population of Atlantic salmon, however, will depend on the availability of specific habitat types that promote growth and minimize mortality over the freshwater period of the salmon life cycle. Here, we briefly consider a number of non-foraging habitat types thought to be critical to Atlantic salmon production. Assessment of the relative importance and how the availability of these critical habitats may change across the range of Atlantic salmon is necessary for understanding spatial variation in Atlantic salmon production.

© 1998 NRC Canada
Spawning and summer feeding habitat

Adult salmon construct redds in small streams providing erosional areas with moderate velocities and depths and with unarmored and porous substrata (see Gibson 1993). Lack of available spawning habitat (at the local-habitat, reach, or watershed scale) will obviously limit salmon production (see Gee et al. 1978). After emergence from the redd, fry generally disperse but remain within riffles to forage during the spring and summer. Some age-class segregation among parr occurs because, as juveniles grow, they tend to move into slightly deeper, faster water with coarse substrata.

Atlantic salmon generally require water temperatures <20°C for positive growth. In more southerly latitudes, these temperatures may be exceeded during summer. Gibson (1988) observed juvenile salmon in pools but not riffles at temperatures of 24°C, suggesting reduced growth potential. In some streams, groundwater sources may be a critical factor in maintaining suitable thermal habitat for salmonids (cf. Meisner et al. 1988). Indeed, survival of juvenile salmon in a Maine river has been positively associated with summer discharge. Adequate levels of discharge are apparently required to maintain both cooler temperatures and available feeding habitat (Havey and Davis 1970).

Overwintering habitat

As water temperatures cool in the autumn, juvenile salmon move into sheltered habitats to overwinter. Parr may hide under large substrata in runs and riffles (Gibson 1978; Cunjak 1988), or to move into deep pools (Allen 1940; Jensen and Johnsen 1986), or show both behaviors (Cunjak 1996). The availability of sheltered winter habitat is probably most critical in streams with extensive ice cover, which reduces total habitat volume and can cause high parr mortality during ice breakup. Mortality risk may vary with reach-scale habitat structure and from year-to-year. For example, in years when ice breakup occurs slowly, stream riffles tend to be more heavily scoured than pools; however, in years of dynamic, rapid breakup, all habitat types tend to be scoured (R.A. Cunjak, Dept. Fish. and Oceans, personal communication). In some watersheds, local groundwater inflows may serve to maintain important open-water refuges during winter (Cunjak 1996). The potential significance of winter conditions to production is revealed in comparative studies. Randall and Paim (1982) reported that salmon production tended to be lowest in streams where ice cover and near 0°C temperatures occur for about 6 months every year (e.g., New Brunswick, northern Norway). The highest levels of production were recorded from streams where zero temperature occurs for <2 months of the year (e.g., Egglishaw 1970). These differences were attributed to lower biomass and, to a lesser extent, slower rates of growth in the colder streams (Randall and Paim 1982). This conclusion suggests that biomass losses caused by winter mortality should be suspected as an important mechanism controlling patterns of production at watershed and regional scales.

Refugia from predation and competition

Although juvenile salmon apparently prefer riffle habitat in the summer, they may frequent pools when potential competitors and predators are absent. There is also some evidence that parr growth rates may actually be higher in pools (see Gibson 1993). Whether avoidance of pools by parr is due to relatively poor competitive ability compared to other species (cf. Fauch 1998) or due to vigilance against potential predators (e.g., adult brown trout, kingfishers) is not known. It has been shown experimentally, however, that juvenile Atlantic salmon exposed to model rainbow trout or stuffed kingfishers show reduced foraging activity (Metcalfe et al. 1987; Goteitas and Godin 1993).

Refugia from high flow

Spates may reduce salmon production through several mechanisms. Spates that occur prior to fry emergence can scour redd and cause egg or alevin mortality. This is probably of more concern in watersheds where some autumn and winter precipitation falls as rain (e.g., in southern end of range or coastal streams — see Elliott et al. 1998). Large rain-on-snow events can be particularly devastating if they cause redds to be scoured, as has been shown for fall-spawning salmonids in the California Sierra-Nevada (Erm 1988). At the watershed scale, human activity that elevates sediment loads in streams may also increase the effective scour depth for a given discharge, thus reducing egg/alevin survival (Montgomery et al. 1996).

Spates that occur after dispersal from the redds can also cause mortality of young salmon. Juvenile fish in general are vulnerable to downstream displacement by floods (e.g., Harvey 1987). Environmental factors that mitigate mortality from floods include stable large woody-debris (Moore and Gregory 1988; Pearsons et al. 1992) or streambed structure that provides hydraulic dead zones during high water (Lancaster and Hildrew 1993).

Predicting invertebrate and Atlantic salmon production at multiple scales

Clearly, the empirical data do not exist to allow us to rigorously demonstrate the details of how a multi-scale framework operates to control production of juvenile Atlantic salmon. Nonetheless, we believe an attempt to organize existing information in a hierarchical context will aid in identifying important knowledge strengths and gaps that suggest critical research areas that could help define limits to Atlantic salmon production across its enormous range. In keeping with the spirit of the workshop that spawned this paper, we attempt to make some predictions about expected patterns of invertebrate and salmon production at different habitat scales. We view these predictions as critical uncertainties, which, if answered, would greatly increase our understanding of fish–habitat relations and thus contribute to Atlantic salmon conservation, restoration, and management.

General prediction

Larger-scale factors can override factors controlling salmon production at smaller scales

This general prediction is central to a hierarchical view of habitat constraints on ecosystem productivity. For example, water chemistry, water temperature, and sediment supply, important determinants of the biological characteristics of streams, are largely controlled by watershed-scale processes. These factors interact to exert strong control on habitat
Fig. 2. Relationship between stream size (mean annual flow) and
(a) interannual baseflow variation (coefficient of variation in the
ratio of annual low flow to mean annual flow) and
(b) interannual flood variation (coefficient of variation in
magnitude) for 20 unregulated streams in New England (U.S.A.).

A) Interannual Baseflow Variation

B) Interannual Flood Variation

Mean Annual Flow

\(\text{m}^3 \cdot \text{s}^{-1} \)

complexity and stream productivity at the reach scale. Similarly,
reach-scale factors, such as riparian conditions or
channel width, influence productivity at the local habitat
scale by regulating the supply of terrestrial vs. instream
carbon sources. Understanding of watershed to local habitat-
scale processes occurring within the range of the Atlantic
salmon is crucial for effective restoration and management
of streams because effort can then be focused on the hierar-
chical scale(s) that will provide the most effective response.
Given the importance of the general prediction of top-down
control within a habitat hierarchy, however, it is significant
to note that some mitigation procedures, such as use of ri-
parian buffer zones to reduce sediment or nutrient inputs to
streams, are actually attempts to invert the habitat hierarchy
by reducing the effect of a higher-order factor (e.g., waters-
shed) by modifying a lower-order factor (e.g., reach). How-
ever, the efficacy of small-scale remediation in a setting of
larger-scale watershed perturbation may be limited (see
Frissell and Nawa 1992; Roth et al. 1996; Allan et al. 1997).

Watershed scale predictions

Hydrologic regime will be a determinant of salmon production

Hydrologic extremes, in particular, may serve as surro-
gates for habitat quantity and perhaps quality, and thus be
useful in predicting differences in production among salmon
streams (cf. Poff and Ward 1989). Streams with stable
baseflows will have high relative thermal stability, to be less
prone to drying, especially during summer, and to have a fa-
vable chemistry (alkalinity, pH) that supports greater in-
vertebrate and salmonid production (Krueger and Waters
1983; Kwak and Waters 1997). Figure 2a shows for 20
streams in New England, U.S.A. (from Poff 1996) that the
interannual variability in baseflow stability (a measure of
how low streamflow drops relative to the mean annual flow)
vary substantially, especially for small streams <2 \(\text{m}^3 \cdot \text{s}^{-1} \).
Providing that sediment supply is sufficient to maintain
spawning habitat, streams with lower variability in baseflow
stability may be expected to afford more favorable habitat
for salmon production. In a similar vein, interannual vari-
bility in the magnitude of high water conditions may also
indirectly assay risk to juvenile salmonids during the few to
several years they reside in a nursery stream. For the same
20 small New England streams, the range of variability in
high flow conditions varies by a factor of two, suggesting
some streams may provide more temporally benign environ-
ments (and potentially higher production) than others
(Fig. 2b). Interestingly, these variables (baseflow stability
and high flow variability) are not strongly correlated for
these 20 streams \(r = 0.37 \), suggesting that many of these
streams may have different hydrologic constraints.

Land use will be a determinant of salmon production

Land use activities at the watershed scale that enhance
sediment input and thermal extremes of streams, such as
large-scale clear cutting, row cropping, or construction, will
have a negative effect on Atlantic salmon both indirectly by
influencing prey production and directly by influencing fish
mortality. For example, input of silt to a Minnesota stream
from residential construction and agricultural activity in its
upper watershed caused decreases in annual invertebrate
production over a 5-year period (Waters 1982). Variation of
brook trout (Salvelinus fontinalis) production followed an
identical trend. This covariation was attributed either to food
limitation of trout or to the negative effects of siltation on
survivorship of both invertebrates and trout eggs and alevin
(Waters 1982). Recent work in Michigan has demonstrated
that the intensity of watershed-scale agricultural activity is
much more important in explaining site-to-site variation in
stream indices of local habitat and biotic integrity than is lo-
cal riparian condition (Roth et al. 1996; Allan et al. 1997).
Moderate amounts of agricultural land-use, however, have
been shown to have a positive effect on Atlantic salmon pro-
duction, presumably due to enhancement of the trophic basis
for prey production in nutrient-poor watersheds (Kennedy et
al. 1983; Bergheim and Hesthagen 1990; see also Johnston
et al. 1990; Peterson et al. 1993).

© 1998 NRC Canada
Composite reach-structure will be a determinant of salmon production

Factors likely to regulate total production potential for salmon at the watershed scale include the proportion of alluvial stream reaches, which provide both high quality food and non-foraging habitats. The degree to which salmon production may increase with alluviation, however, is not at all clear: production may increase relatively steadily with percent alluvial reaches (Fig. 3, line A), or it may remain relatively flat until some threshold is passed (Fig. 3, line B). Clearly, the distinction would be important in terms of identifying suitable watersheds for Atlantic salmon restoration. Additionally, the spatial and temporal connectivity of stream reaches is critical to allow salmon to discover and exploit optimal habitat at the watershed scale. Selective barriers that restrict movement between reaches can greatly influence spatial patterns of salmon distribution and production. The effects of man-made barriers (e.g., dams) as barriers to efficient movement is well documented; however, the natural structures (e.g., waterfalls, beaver dams) at the local or reach scale can also exert a strong influence over watershed-level production (cf. Crowl et al. 1992; Schlosser 1995).

Reach scale predictions

Proportion of trophic and non-trophic habitat will be a determinant of salmon production

Maximum salmon production should occur under an optimal combination of trophic and non-trophic habitat types. For example, the relative availability of riffles and pools almost certainly influences salmon production. Bowlby and Roff (1986b) found that maximum biomass of multi-species salmonid assemblages sampled from 30 m long reaches in southern Ontario streams peaked at about 44% pool area. For Atlantic salmon, riffles are critical habitat for providing quality prey production and for spawning habitat, whereas pools serve important non-trophic functions, such as overwintering (Cunjak 1996), summer low flow refugia (Gibson 1988), or holding areas for smolts (R.A. Cunjak, Dept. Fish. and Oceans, personal communication). However, the frequency and (or) diversity of the various habitat types needed to maximize Atlantic salmon production is unknown (Gibson 1993; Cunjak 1996). Trophic habitat probably declines with increasing frequency of pools, but the degree to which the non-trophic function of pool habitat will contribute to potential salmon production is unknown. As an illustration, relatively few pools may be needed to ensure high survival of juveniles (Fig. 4, line A), or survival and subsequent production may increase relatively linearly with pool availability (Fig. 4, line B). In this hypothetical example, the fewer pools needed to ensure survival during bottleneck periods, the greater the potential salmon production in the reach. The slopes of these hypothetical curves might be expected to change as environmental conditions change, e.g., siltation (a watershed factor) would drive the food-production line down. Although this example is clearly an oversimplification of reality, it points to important potential tradeoff that needs some quantification if we are to understand geographic variation in limits to salmon production.

Non-trophic habitat requirements may cause uncoupling of prey – salmon production relationships

Depending on the interaction between non-trophic and trophic habitat requirements, the extent to which salmon are food-limited will vary with habitat structure. For example, in Fig. 4, the points of intersection of lines A and B indicate when limits on “carrying capacity” switch from food-limitation to non-food limitation. Until more is known about the interaction between non-trophic and trophic habitat requirements, the degree to which juvenile salmon production is coupled to invertebrate production will remain obscure.

Local habitat-scale predictions

Availability of specific local-habitat types will control prey community composition and production

Although this factor has received a great deal of study in temperate streams, there is little information about habitat–production relationships for prey communities in high latitude streams. The lack of this information renders recommendations about local-habitat types most favorable for salmon foraging speculative. Relative levels of prey production in pool versus riffle or bedrock outcrop in Atlantic salmon streams, for example, are for the most part unknown.
Fig. 5. A multi-scale view of selected factors suspected to influence secondary production in Atlantic salmon streams. The four quantitative scenarios presented in this figure are purely hypothetical, yet constrained to occur within realistic limits. These scenarios compare a hypothetical “standard stream” (left graph in all scenarios) to others that are influenced by factors operating at different levels within a spatial hierarchy (habitat, reach, watershed). See text for further explanation.

Production of quality prey is a determinant of salmon production

Prey – salmon production relationships based on measurements of gross prey production may obscure coupling between trophic levels, should these exist. Salmon production may be more profitably evaluated against the availability of high quality prey, both benthic (cf. Rader 1997) and terrestrial. Although processes operating at the reach scale will influence total prey quantity (e.g., proportion of trophic habitat available across the reach), the specific types of local habitat present will determine the production of quality prey for Atlantic salmon, because of the fundamental relationship between local habitat and invertebrate community composition.

A synthesis

An attempt to integrate selected physicochemical and non-trophic habitat limitations on invertebrate and salmon production in a multi-scale context is presented in Fig. 5. We provide these graphs as an heuristic device to show the value of conducting detailed production studies in a multi-scale framework and to highlight knowledge gaps about factors influencing production in salmon streams. Since comprehensive data do not exist, these quantitative scenarios are hypothetical, yet constrained to occur within realistic limits. The graphs predict how production of invertebrates and salmon respond to factors operating at three spatial scales: watershed, reach, and local habitat. An hypothetical “standard stream” of specified watershed and reach characteristics is used as a basis for comparing scale-dependent responses. Composite local habitat-scale effects are represented by a changing ratio of riffle to pool area; reach-scale effects are represented by contrasts in channel constraint and riparian-canopy cover; watershed-scale effects are represented by contrasts in bedrock geology (non-carbonate versus carbonate) and land use (hardwood forest versus clearcut).

Our “standard stream” has an alluvial riffle-pool channel with a closed forest-canopy; riffles have coarse substrata and pools have fine sediments and are scoured during high flows; the watershed is forested and the bedrock is non-carbonate material. The composite local habitat ranges from 100% pool (extreme left of the X-axis on all graphs) to 100% riffle (extreme right). The Y-axis indicates hypothetical levels of habitat-weighted production expected for total benthic invertebrate prey, quality prey (sensu Rader 1997), and juvenile Atlantic salmon. Annual invertebrate production in riffles (7 g AFDM·m⁻²) and pools (2 g AFDM·m⁻²), and ratio of riffle to pool production (3.5) are based on reports for temperate streams with alluvial channels and mean discharge ~1 m⁻³·s⁻¹ (e.g., Benke 1993; Grubaugh et al. 1997). The proportion of production attributable to “quality prey” was set at 20% of riffle production, which is probably liberal for forested streams (cf. Huryn and Wallace 1987). Gross production efficiency of juvenile salmon was set at 20% for non-quality prey and 25% for quality prey. There is fairly good evidence to support the former efficiency (Waters 1988), but little evidence to support the latter, which may be conservative. Salmon were assumed capable of consuming all prey. Salmon production was assumed to be zero until pool habitat was reduced to less than 90% of the total stream area due to lack of sufficient riffle habitat for spawning. Once the pool habitat decreased to below 30% of the stream area, salmon production was reduced to reflect other non-trophic habitat limitation. There is no empirical basis for a precise threshold response as indicated on the graphs (cf. Fig. 4), so salmon production was simply decreased in proportion to the ratio of decreasing pool area to increasing riffle area. To examine how invertebrate and fish production respond to environmental factors at different hierarchical
scales, we manipulated reach-scale features (Scenarios 1 and 2) and watershed-scale features (Scenarios 3 and 4).

Scenario 1. The standard unconstrained alluvial reach is compared to a bedrock constrained reach in a forested, non-carbonate watershed. Annual macroinvertebrate production on the bedrock run habitat was set at 3.5 g AFDM \cdot m^{-2}, and production in pools was set at 1 g AFDM \cdot m^{-2}, or 50% of the production expected for alluvial riffle and pool habitats in similar size streams, a conservative difference assuming no moss cover (Purvis 1995). Salmon production was also reduced by 10% to reflect greater bioenergetic costs associated with foraging and maintaining position in this low-cover stream channel.

Scenario 2. The canopy has been removed from the standard stream, but the watershed remains forested beyond the channel margins. Production in riffles is increased 1.7x relative to the standard stream, following Behmer and Hawkins (1986), who showed a ratio of production in open riffles to shaded riffles ranging from 0.6 for filter-feeders to 2.8 for collector-gatherers and facultative grazers. Production in pools was increased 2x to reflect an overall increase in production because of enhanced quality of algal-derived detritus. The proportion of quality prey in the riffle habitat was doubled to 40% of total prey production, assuming a dramatic response of Baelis production after canopy removal (see Behmer and Hawkins 1986; Wallace and Gurtz 1986).

Scenario 3. The standard stream is modified to reflect a watershed-scale change in underlying geology of carbonate bedrock. Production in riffles and pools was increased 2x, which conservatively follows trends reported in the literature (Krueger and Waters 1983; Purvis 1995). However, although quality prey production also doubled, its proportion was not increased beyond the standard 20%, because significant amounts of production in carbonate streams are often in the form of armored organisms, such as snails (Hury et al. 1995; Purvis 1995). We note, however, that amphipods can be abundant in some carbonate streams (e.g., Krueger and Waters 1983). In such cases, the proportion of quality prey as amphipod production might be more substantial in these streams.

Scenario 4. In this scenario, the standard non-carbonate watershed has been clearcut, which also causes opening of the canopy at the reach scale. Invertebrate production was increased in riffles (1.7x) and pools (2x) reflecting the positive effects of increased light, temperature, and nutrients. The proportion of quality prey was also increased to 40% of riffle production to reflect expected increases in baetids (see Scenario 2). Unlike Scenario 2, however, salmon production was reduced by 50% to reflect the negative effects of clear cutting on thermal regime and silt deposition on egg and alevin survival.

Results. In each scenario, maximum annual salmon production occurred when riffle area comprised 70% of total stream area. In the standard stream, peak salmon production was 1.2 g AFDM \cdot m^{-2}. Predictions of salmon production responded strongly to various scenarios of habitat alteration. Maximum annual salmon increased substantially when underlyng geology was changed at the watershed scale to carbonate bedrock (2.4 g AFDM \cdot m^{-2} in Scenario 3) and when canopy conditions were opened at the reach scale (2.1 g AFDM \cdot m^{-2} in Scenario 2). Minimum salmon production was predicted when reach-scale channel form was constrained bedrock (0.5 g AFDM \cdot m^{-2} in Scenario 1). In Scenario 4, where both watershed-scale and reach-scale factors were modified, predicted annual salmon production was 1.0 g AFDM \cdot m^{-2}, a value similar to the standard stream. The range of predicted values falls within the range reported for Atlantic salmon streams, ca. 0.2–1.6 g \cdot m^{-2}, with 3.1 g AFDM \cdot m^{-2} being an extreme value from a carbonate watershed (Mann 1971). Certainly, the realism of these empirically based predictions about invertebrate and salmon production is questionable, given the gross assumptions and the extreme paucity of empirical data. Further, these predictions are based on short-term biotic responses to habitat alteration, and they do not take into account long-term geomorphic and ecological adjustments to habitat alteration. For example, while opening the canopy may stimulate short-term production of prey, removal of riparian trees can also result in a reduction of woody debris inputs to the stream channel. Subsequently, channel form may become simplified over time, resulting in reduced habitat complexity which can diminish cover for fish and may depress invertebrate production (see Gregory et al. 1991). Similarly, the prediction that clearcut watersheds with riparian canopy removal (Scenario 4) may produce as much salmon as the undisturbed standard stream does not take into account long-term habitat simplification, such as the reduction in pool frequency and size from siltation and loss of woody debris inputs (Bisson et al. 1992).

Despite these shortcomings, the scenarios are instructive because they allow us to visualize limitations to our knowledge about how multi-scale factors effect secondary production in streams. While the relationship between local habitat and production of stream invertebrates is firmly established, knowledge about how production might be influenced by factors operating at other spatial and temporal scales in the reach-watershed-region hierarchy are speculative. The scenarios do, however, allow us to posit several scale-dependent predictions that are relevant to both our earlier speculations (see “Predicting invertebrate and Atlantic salmon production at multiple scales,” above) and to current and future research on Atlantic salmon (e.g., Armstrong et al. 1998; Parrish et al. 1998).

Conclusions

Our ability to predict how multi-scale factors might influence the productivity of Atlantic salmon streams is clearly limited given the present state of stream ecology. This lack of knowledge about multi-scale factors is largely attributable to the traditionally selected unit of study: the local habitat. As a consequence, the relationship between invertebrate production and local habitat is fairly well understood for temperate latitude streams, while understanding of factors operating above the scale of the local habitat for streams at any latitude are based largely on speculation. Compared to the relatively detailed knowledge about invertebrate production, there seems to be little general understanding about

© 1998 NRC Canada
how trophic vs. non-trophic habitat influences salmon production at any scale. A predictive knowledge about salmon production across the geographic range of *Salmo salar* will require us to understand more clearly the dynamics of the relationship between trophic vs. non-trophic habitats and to define how this relationship changes with spatial scale — from local habitat on up the hierarchy.

Acknowledgments

This paper was stimulated by a workshop held in Braemar, Scotland, in March 1997, entitled “Integrating across scales: predicting patterns of change in Atlantic salmon.” We are very grateful for the support and vision of the Northeastern Fish Experimental Station of the USDA Forest Service (especially Richard Degraaf, Robert Lewis, and Keith Jensen). We also thank Joan Trial (Department of Inland Fisheries and Wildlife, Bangor, Maine) and David Halliwell for providing literature. NLP thanks Trout Unlimited for support during the development of this paper. Comments on an earlier draft by anonymous reviewers were also helpful in improving this paper.

References

Gibson, R.J. 1978. The behaviour of juvenile Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis) with regard to temperature and to water velocity. Trans. Am. Fish. Soc. 107: 703–712.

Roth, N.E., Allan, J.D., and Erickson, D.L. 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecol. 11: 141–156.

